• Speaker : Quanyan Zhu
  • Location : ITE 336
  • Date : September 10th, 2018
  • Time : 1:00 - 2:00 PM

Abstract

The development of smart grid in the U.S. over the last decade significantly enhanced data acquisition capabilities on the transmission system. For the distribution network, numerous remote control devices and voltage/var control systems have been installed and millions of smart meters are now operational on the customer side. Although the level of automation has been improved, there are great challenges in the grid’s ability to withstand extreme events such as catastrophic hurricanes and earthquakes. Resiliency of the future grid can be achieved by enabling flexible reconfiguration with distributed resources, e.g., microgrid, distributed generations, as well as renewable and storage devices. Advanced and distributed operation and control will be critical for the vision. Fast increasing connectivity of the devices and systems on the power grid also led to a serious concern over the security of the complex cyber-physical system. Progress has been made in developing new technologies for cyber security of the power grid, including monitoring, vulnerability assessment, intrusion detection, and mitigation.

Bio